
Malware Analysis Report

Wannacry Ransomware

Thomas MacKinnon
February 2024
Version 1.0

Contents

1 Executive Summary 1

2 High-Level Technical Summary 2

3 Malware Composition 3
3.1 Wannacry.exe . 3
3.2 @WanaDecrypt0r@.exe . 3
3.3 tasksche.exe . 3

4 Basic Static Analysis 4

5 Basic Dynamic Analysis 6

6 Advanced Static Analysis 9

7 Advanced Dynamic Analysis 11

8 Indicators of Compromise 12
8.1 Host Based Indicators . 12
8.2 Network Based Indicators . 12

9 Rules and Signatures 13

i

List of Figures

1 Flowchart of Wannacry . 2
2 Floss output for wannacry.exe . 4
3 PE Studio findings for Wannacry . 5
4 Result after detonation . 6
5 Wireshark picking up the HTTP request to the suspicious domain . . 7
6 ARP requests from Wannacry . 7
7 TCP View showing the attempt of spreading the malware 8
8 Tasksche.exe creating an unpacking folder 8
9 Reversing the Jump in Wannacry Assembly code 9
10 Wannacry infecting machine whilst having a simulated connection . . 10
11 Editing registers to bypass anti-analysis techniques 11
12 Wannacry wallpaper . 12
13 Yara rules for Wannacry . 13

ii

1 Executive Summary

File name sha256sum

wannacry.exe 24d004a104d4d54034dbcffc2a4b19a11f39008a575aa614ea04703480b1022c

Wannacry.exe is a devastating piece of Ransomware, with Worm like capabilities
through network traversal features to infect other hosts through SMB ports, tar-
getting x32 Windows systems. The binary encrypts all user files with the .WNCRY

extension and prompts the victim to pay the ransom through the “Wana Decrypt0r”
application which is found with other related files on the Desktop. The “Wana de-
crypt0r” application runs continuously, gaining persistence, and the files cannot be
recovered unless the ransom is paid, with a deadline before the files are lost forever.

Symptoms of infection are obvious intentionally. Yara rules have been written and
can be found in Appendix A. Additionally, a kill switch for the binary was discovered,
preventing the payload from detonating.

1

2 High-Level Technical Summary

Wannacry consists of one large payload after anti-analysis checks, which results in
encryption of user files, and the unpacking of associated software from a staging folder
named located at C:\ProgramData\kgxhvkydfwf152. After encryption completes,
several files and the “Wana Decrypt0r” application are copied to the Desktop, which
runs continuously until the victim pays. Figure 1 shows the flow of Wannacry.

Figure 1: Flowchart of Wannacry

2

3 Malware Composition

File name sha256sum VirusTotal Result

wannacry.exe 24d004a104d4d54034dbcffc2a4b19a11f39008a575aa614ea04703480b1022c 69/72
@WanaDecrypt0r@.exe b9c5d4339809e0ad9a00d4d3dd26fdf44a32819a54abf846bb9b560d81391c25

tasksche.exe

Table 1: Sha256 and VirusTotal results for Malware components

3.1 Wannacry.exe

Malware written in C++ for x32 Windows systems, that contains mainly suspicious
strings, imports, and libraries. Encrypts all user files and creates the tasksche.exe
process after anti-analysis.

3.2 @WanaDecrypt0r@.exe

The Decryptor tool, which appears in every directory of the victim’s machine, con-
stantly reopens and presses payment with a deadline before file deletion. The tool is
also responsible for encrypting files, including any new files made post-detonation.

3.3 tasksche.exe

A process that creates a staging folder in C:\ProgramData\kgxhvkydfwf152, that
creates many of the tools and files used in the later stages of the payload. This also
sets the language based on the victim’s IP.

3

4 Basic Static Analysis

The binaries sha256 sum was retrieved and submitted to VirusTotal, which stated it
was a very dangerous piece of ransomware named Wannacry.

Next, the strings of Wannacry were extracted using Floss and sent to a text file. There
were a lot of suspicious calls to command prompt, changing the security settings, and
notably a full URL “hxxtp://www.iugerfsodp9ifjaposdfjhgosurijfaewrwergwea.com”
to a very strange domain, as seen in Figure 3

Figure 2: Floss output for wannacry.exe

PE studio revealed the imports and libraries used, with suspicious use of Microsoft
encryption and cryptographic libraries. The tool also highlighted the use of Internet
connection imports likely to be used with the URL found in strings. The Attrib +h

was also uncovered, meaning the binary is executing with the hidden attribute as to
not appear in directory listings.

4

Figure 3: PE Studio findings for Wannacry

PE View was used to check if the binary was packed or not, however, the sizes were
very similar indicating that there was no unpacking involved.

5

5 Basic Dynamic Analysis

Figure 4: Result after detonation

The binary does nothing upon regular detonation, only triggering when run as an
administrator, likely to use the libraries that require elevated permissions. Wannacry
has no visible indicators initially, but shortly after every file will become unreadable
with the .WNCRY extension, the “Wana Decrypt0r 2.0” application will appear and
a README text file, and an image will all be found on the desktop. The image
will be set as the wallpaper, informing the user that the files on the machine are
encrypted, and a ransom must be paid to get them back. The “Wana Decrypt0r”
will continuously run and reopen, pressuring the user further with a time limit before
the files are lost forever, as well as contact information. Finally, the text file includes
similar information to the previous two, just informing and pressuring the victim into
paying. All of this can be seen in Figure 4.

Running the binary without an internet connection produces an unreachable response
in Wireshark, however, a simulated internet connection (such as INetSim) produces
the result in Figure 5. As the suspicious domain is there, this is likely an anti-
analysing technique to detect a simulated connection, as the author at the time of
writing the binary knew the domain did not exist.

6

Figure 5: Wireshark picking up the HTTP request to the suspicious domain

Additionally, an array of ARP requests where sent which Wireshark caught, primar-
ily to 10.0.0.3 Remnux machine but also to every possible host on the network.
This is typical of a Worm, discovering other hosts to potentially infect, showing the
multifaceted nature of this binary.

Figure 6: ARP requests from Wannacry

Checking TCP View at detonation shows that these requests are being sent to the
Server Message Block (SMB) remote ports of other hosts on the network, as seen in
Figure 7. This is likely to share the malicious files and cause further infections, and
thus more potential ransoms paid for the threat actor.

7

Figure 7: TCP View showing the attempt of spreading the malware

Procmon revealed the creation of the tasksche.exe process, which interestingly cre-
ated a folder within the ProgramData of the C drive. Digging further reveals that this
is a staging folder for Wannacry, where the various tools are originally stored before
being copied to other directories in the victims machine.

Figure 8: Tasksche.exe creating an unpacking folder

8

6 Advanced Static Analysis

Wannacry notably contains the request to “hxxtp://www.iugerfsodp9ifjaposdfjhgosurijfaewrwergwea.com”,
and if there is a 200 OK status code will stop before the payload is executed. This tech-
nique is used to prevent the analysis of binary in a virtual machine with a simulated
internet connection, such as the analysis being conducted for this paper. However,
using Cutter’s write mode this can be reversed to force Wannacry into executing even
after receiving a successful status code. Once the main function of the Assembly code
was found, the decision-making statement was easy to identify, essentially jumping
to a specific memory address if the condition is met. Selecting this jne (jump if not
equal) instruction and reversing the jump, as seen in Figure 9, will change it to a
je(Jump if Equal).

Figure 9: Reversing the Jump in Wannacry Assembly code

This results as intended, with Wannacry executing its full payload with a simulated
internet connection, as seen in Figure 10 with INetSim running on the Remnux VM.
This is similar to how Wannacry was actually stopped in 2017, with Marcus Hutchins
registering the domain that is called in the binary, meaning a successful HTTP status
code would be received by any machine with an internet connection, essentially acting
as a kill switch for this piece of malware.

9

Figure 10: Wannacry infecting machine whilst having a simulated connection

10

7 Advanced Dynamic Analysis

A debugger can be used to get past the check for simulated internet connection
similarly to the Cutter technique, this time changing the register values before the
JNE is performed to falsify the result without editing the code. Wannacry.exe was
loaded into x32 Debugger, the position was found from the early Cutter analysis, and
then the Zero Flag was changed in the JNE from 0 to 1 thus allowing the program
to run again even with a simulated internet connection, as seen in Figure 11.

Figure 11: Editing registers to bypass anti-analysis techniques

One of the strings in Wannacry was the “IsDebuggerPresent” import, often used for
anti-analysis, however, this could not be found within the binary and did not affect
the debugger, suggesting it was a holdover from an older version or simply broken.
The same technique could be used on this import, though, so it would not have caused
any issues to this investigation.

11

8 Indicators of Compromise

Like most ransomware, the Indicators of Compromise for Wannacry are rather obvi-
ous, as the threat actor responsible is eager for the victim to know and be forced into
paying the ransom.

8.1 Host Based Indicators

• Encrypted file - All user files on the machine will be encrypted with the .wcry
file extension.

• Wannacry software - The Wana Decrypt0r application will continue to open,
attempting to extort the victim to send money to the Bitcoin wallet to unlock
their files. This program can be found in every directory of the victim’s machine

• Wannacry wallpaper - The Desktop wallpaper will change to a warning mes-
sage exclaiming the machine’s files have been encrypted and to use the Wana
Decrypt0r software. This file will also appear on the desktop, and can be seen
in Figure 12.

• Wannacry text file - found on the desktop informing on how to pay.

Figure 12: Wannacry wallpaper

8.2 Network Based Indicators

• Call to suspicious domain - The binary will call to “hxxtp://www.iugerfsodp9i
fjaposdfjhgosurijfaewrwergwea.com”, and use the http status code to either con-
tinue or abort the payload.

• Network discovery - ARP requests to discover other hosts on the network
for further infection.

12

9 Rules and Signatures

Yara rules were written using the indicators identified, focusing on finding wannacry
before it can execute or gathering all locations of malicious files after encryption.
The full rules can be found in the Appendix, and Figure 13 shows the rules in action
flagging the different locations before detonation.

Figure 13: Yara rules for Wannacry

13

Appendix

Yara Rules

r u l e wanna yara {

meta :
l a s t updated = ”2024−13−02”
author = ”Thomas MacKinnon”
d e s c r i p t i o n = ”Yara Rules f o r Wannacry . ”

s t r i n g s :
$ur l = ”http ://www. i ug e r f s odp9 i f j apo sd f j h go su r i j f a ew rwe r gwea . com” a s c i i
$ f i l e = ” tasksche . exe ” a s c i i
$ext = ”wncry” a s c i i
$name = ”wannacry . exe ” a s c i i
$command = ”cmd . exe /c '%s '” a s c i i

c ond i t i on :

$ur l or $ f i l e or $ext or $name or $command

}

14

	Executive Summary
	High-Level Technical Summary
	Malware Composition
	Wannacry.exe
	@WanaDecrypt0r@.exe
	tasksche.exe

	Basic Static Analysis
	Basic Dynamic Analysis
	Advanced Static Analysis
	Advanced Dynamic Analysis
	Indicators of Compromise
	Host Based Indicators
	Network Based Indicators

	Rules and Signatures

